Extensions 1→N→G→Q→1 with N=C32 and Q=C3×Q8

Direct product G=N×Q with N=C32 and Q=C3×Q8
dρLabelID
Q8×C33216Q8xC3^3216,152

Semidirect products G=N:Q with N=C32 and Q=C3×Q8
extensionφ:Q→Aut NdρLabelID
C32⋊(C3×Q8) = C3×PSU3(𝔽2)φ: C3×Q8/C3Q8 ⊆ Aut C32248C3^2:(C3xQ8)216,160
C322(C3×Q8) = He33Q8φ: C3×Q8/C4C6 ⊆ Aut C32726-C3^2:2(C3xQ8)216,49
C323(C3×Q8) = C3×C322Q8φ: C3×Q8/C6C22 ⊆ Aut C32244C3^2:3(C3xQ8)216,123
C324(C3×Q8) = Q8×He3φ: C3×Q8/Q8C3 ⊆ Aut C32726C3^2:4(C3xQ8)216,80
C325(C3×Q8) = C32×Dic6φ: C3×Q8/C12C2 ⊆ Aut C3272C3^2:5(C3xQ8)216,135
C326(C3×Q8) = C3×C324Q8φ: C3×Q8/C12C2 ⊆ Aut C3272C3^2:6(C3xQ8)216,140

Non-split extensions G=N.Q with N=C32 and Q=C3×Q8
extensionφ:Q→Aut NdρLabelID
C32.(C3×Q8) = Q8×3- 1+2φ: C3×Q8/Q8C3 ⊆ Aut C32726C3^2.(C3xQ8)216,81
C32.2(C3×Q8) = C9×Dic6φ: C3×Q8/C12C2 ⊆ Aut C32722C3^2.2(C3xQ8)216,44
C32.3(C3×Q8) = Q8×C3×C9central extension (φ=1)216C3^2.3(C3xQ8)216,79

׿
×
𝔽